LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

	THIRD SEMESTE	ER – NOVEMBER 20	007	
	MT 3804 - CLAS	SSICAL MECHANIC	:S	AB 25
Date : 26/10/2007 Time : 9:00 - 12:00	Dept. No.		Max. : 10	00 Marks
Answer ALL the questio	ns and each questic	on carries 20 marks		
01.a.(i).State and prove th	e principle of Virtua	l Work OR		
	-	ion for a bead sliding $x = a (\theta - \sin \theta)$, $y =$		e shape of [5]
b. (i).Derive the Lagran pendulum	nge's equation of mo	tion and hence deriv	e the equation of	f simple
1		OR		
		ce Lagrange's equati e of revolution of a c		on's [15]
02.a.(i) .Write down the H equation of motion.	lamiltonian function		ılum and deduce	eits
(;;) II-; 41 II;	l	OR	- 1	:
b.(i). Formulate the Ha		n		
('') D (' 1'	11 . 1 1 1	OR		1.
•		ve the equation of monor of motion of a part	U	
03.a.(i).Find the values of a canonical transforma			$p, P = q^{\alpha} \sin \beta p$	represent
	1	OR		F#3
(ii). Establish a relatio	n between Lagrange	and Poisson bracket.		[5]
b.(i). State and prove I	Hamilton's principle	of least action OR		
	_	the motion of a top b	y	
i.Lagrange's met				
ii.Hamilton's met	thod			

04. a.(i) .State and prove Liouvilli's theorem .		
OR (ii) Find the transformation equation for ICT interms of Poisson bracket	[5]	
(ii). Find the transformation equation for ICT interms of Poisson bracket	[5]	
b.(i).Derive Jacobi's identity.		
OR	F.4 = 3	
(ii).Derive the conservation theorem of angular momentum.	[15]	
05.a. (i).Discuss the motion of a particle moving in a plane under the action of central for using Hamilton Jacobi equation	orce	
OR		
(ii).Classify the different types of periodic motion.	[5]	
b.(i).Derive the Hamilton – Jacobi equation for the Hamilton's principle function S. and deduce that $S = \int L dt + C$		
OR		
(ii).Discuss Kepler's problem using action angle variable.		
